Social Icons

11 de febrero de 2016

Cientificos logran observar ondas gravitacionales


Por primera vez, los científicos han observado ondulaciones en el tejido del espacio-tiempo, llamadas ondas gravitacionales, llegando a la Tierra procedentes de un evento catastrófico en el distante universo. Esto confirma una importante predicción de la teoría de la relatividad general de Albert Einstein de 1915 y abre una nueva ventana sin precedentes en el cosmos.

Las ondas gravitacionales llevan consigo información acerca de sus dramáticos orígenes y sobre la naturaleza de la gravedad que no puede obtenerse de otra manera. Los físicos han llegado a la conclusión de que las ondas gravitacionales detectadas fueron producidas durante la última fracción de segundo de la fusión de dos agujeros negros para producir un solo agujero negro más masivo en rotación. Esta colisión de dos agujeros negros había sido predicha pero nunca antes había sido observada.

Las ondas gravitacionales fueron detectadas el 14 de septiembre de 2015 a las 5:51 hora de verano del este de Estados Unidos (09:51 UTC) por los dos detectores gemelos del Observatorio por Interferometría Láser de Ondas Gravitacionales (LIGO), ubicados en Livingston, Louisiana, y Hanford, Washington, EE.UU. Los observatorios LIGO están financiados por la National Science Foundation (NSF), y fueron concebidos y construidos, y son operados por Caltech y MIT. El descubrimiento, aceptado para su publicación en la revista Physical Review Letters, fue realizado por la Colaboración Científica LIGO (que incluye la Colaboración GEO600 y el Australian Consortium for Interferometric Gravitational Astronomy) y la colaboración Virgo usando datos de los dos detectores LIGO.

Alicia Sintes está emocionada. Ella ha dedicado casi 20 años a la caza de estas elusivas ondas y ha trabajado para mejorar los detectores existentes y futuros. Para ella, el 14 de septiembre quedará marcado en su memoria como el inicio de una nueva era en astronomía: la astronomía gravitacional. Una herramienta que ayudará a desvelar muchos misterios del Universo.

Todos los miembros de la colaboración LIGO en la UIB han trabajado sin cesar durante estos últimos meses analizando los datos del primer periodo de observación de Advanced LIGO y los datos relacionados con este evento en particular. Varios de los investigadores de la UIB han contribuido de forma directa a este descubrimiento. Entre ellos se encuentra Miquel Oliver, un estudiante de doctorado de la UIB, que ha tenido la oportunidad única de vivir directamente este descubrimiento, ya que desde principios de septiembre se encontraba en la sala de control de LIGO Hanford monitorizando el detector, y caracterizando la calidad de los datos. A su vez, el profesor Sascha Husa, junto con el investigador postdoctoral David Keitel y el estudiante de doctorado Francisco Jiménez, han contribuido directamente a la identificación de la fuente a través de su investigación sobre la fusión de agujeros negros.

Con el fin de discernir el origen cósmico de una señal de onda gravitacional, o para calcular las masas de los objetos implicados, hay que resolver las ecuaciones de Einstein, que son el núcleo de la teoría de la relatividad general, y entender cómo las propiedades de la señal de las ondas gravitacionales dependerán de las propiedades de la fuente a través de las posibles señales.

Sascha Husa nos lo explica: “La idea básica es muy similar a la de aplicaciones de teléfonos inteligentes para identificar música, como Shazam. Si escuchas una canción en un bar ruidoso, la aplicación puede consultar una base de datos de posibles señales, y usando algoritmos matemáticos para compensar el ruido, te dirá cuál se ajusta mejor. Mi trabajo consiste en hacer un catálogo de todas las posibles señales de ondas gravitacionales procedentes de la fusión de agujeros negros, para que los que analizan los datos puedan compararlas con las señales inmersas en ruido que son registrada por LIGO”.

De acuerdo con la relatividad general, una pareja de agujeros negros orbitando uno alrededor del otro pierde energía mediante la emisión de ondas gravitacionales, produciendo un acercamiento gradual entre ambos durante miles de millones de años, y luego mucho más rápidamente en los últimos minutos. Durante la última fracción de segundo, los dos agujeros negros chocan entre sí a casi la mitad de la velocidad de la luz y forman un único agujero negro más masivo, convirtiendo una parte de la masa de ambos en energía, de acuerdo con la fórmula de Einstein E = mc2. Esta energía se emite como una fuerte explosión final de ondas gravitacionales. Basándose en la física del choque entre dos agujeros negros, los científicos de LIGO estiman que la masa de los agujeros negros de este evento era 29 y 36 veces mayor que la del Sol, y que el evento tuvo lugar hace mil trescientos millones de años. Una masa aproximadamente 3 veces mayor que la del Sol se convirtió en ondas gravitacionales en una fracción de segundo, con una potencia pico de unas 50 veces la de todo el Universo visible. Estas son las ondas gravitacionales que LIGO ha observado.

Fuente y mas información: NCYT

No hay comentarios:

Publicar un comentario

 

FacebookTwitterGoogle PlusTumblrYouTubeFlickrVimeoPinterestLinkedinMyspaceDeliciousStumbleUpon